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Abstract-In order to clarify the control mechanism of a
stomatognathic system, we developed a two-dimensional
dynamic jaw model capable of performing an unloaded
open-close movement. To simulate an open-close
movement, we created a position feedback control scheme
by providing a desired movement. Our numerical results
verified that the proposed model could be applied to
mandibular movement control analysis.
Keywords – dynamic model, control analysis, mandibular
movement, constraint condition, computer simulation
  

I. INTRODUCTION
  
Stomatognathic functions such as chewing, swallowing, and
speech are achieved by precise jaw movements, which are
controlled by coordinated activities of the masticatory and
suprahyoid muscles. During a jaw movement, these muscles
must operate in a variety of ways, almost simultaneously.
Additionally, the number of those involved in carrying out a
given task is theoretically redundant.

To date, several investigations have been conducted in
anatomy and physiology, though the control mechanism of
these muscles has not yet been sufficiently clarified. Recently,
numerical studies based on dynamic mathematical models
and mastication robots have inspired interest [1],[2]. We
previously analyzed the controllability of temporomandibular
joint loading during biting by musculation, employing a
simple static jaw model [3]. In this study, we developed a
two-dimensional dynamic jaw model that included the
morphology of the temporomandibular joint, and verified that
the model could be applied to mandibular movement control
analysis.
  

II. TWO-DIMENSIONAL DYNAMIC JAW MODEL
  
A. Outline
  
Let o-xy be a referential coordinate frame, where the origin o
is fixed on the maxilla, and the x-axis is parallel to the
Frankfort horizontal plane (Fig.1). The mandible and the
maxilla were modeled as rigid masses, and the shape of the
temporomandibular joint was represented as a third-order
polynomial function. Our jaw model incorporated the
following muscles: the masseter including the internal
pterygoid, the superior and inferior lateral pterygoid, the
anterior and posterior temporalis and digastric. The muscles

were assumed to run straight between their fixed origins in
the maxilla and their fixed insertions in the mandible. The
muscular-tendon was modeled using Hill’s three-element
model, referring to the musculoskeletal human body model of
Komura et al. [4].
  
B. Constraint Equation
  
A third-order polynomial curve was used to represent the
condylar movement path of the kinematic axis point :

( ) ( ) 02 =⋅+⋅ -d-Yk -Xk-cb-Xk a (1)

where dcba ,,,  denote arbitrary constants, and YkXk,
denote the coordinates of the kinematic axis point (Fig. 1).
The constraint equation can be derived by differentiating
equation (1) with respect to time. Thus,
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In vector-matrix notation, the equation (2) was expressed as:

( ) 0=qq &Q (4)

where [ ]Tkkk YXA ,,≡q , ( ) [ ]210 ggQ =q  and kA  is

the rotation angle of the mandible. This equation is embedded

in the unconstrained dynamic equation.

Figure 1. Two-dimensional jaw model including the morphology of the
temporomandibular joint
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C. Dynamic Equation
  
The dynamic equation can be written as [5]:

( ) ( ) ( ) ( ) ( )qqqqeqqq MCBQA ++=− 2&&& (5)

where ( )qA  is the mass matrix, ( )qB  is the Coriolis and

centrifugal effects, ( )qC  is the gravitational term,
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[ ]TrrrM 321 ,,)( ≡q  is the moment-arm matrix,

[ ]321 ,, eee≡e  is the constraint force, l  is the distance

between the kinematic axis point and the center of gravity, I

is inertia, and g  is gravitational force. If the equation (5) is

premultiplied by the orthogonal compliment matrix ( )qT  of

( )qQ , it reduces to

( ) ( ) ( ) ( ) ( ) ( )[ ]qqqqqqq MCBTqAT ++= 2&&&  . (6)

Differentiating the constraint with respect to time gives an

equation of the form
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Embedding the constraint equation (7) in the dynamic

equation (6), we get
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III. EXPERIMENT

  

This section describes the simulation of an open-close

movement, which was performed using a position feedback

control scheme to provide a desired trajectory of the incisal

point.

  

A. Position Control

  

Figure 2 shows the position feedback control system where t

represents the update number, Z∆ is the weighted deviation,

and iK , pK and sK  are the integral, proportional, and

differential coefficients of the PID control system,

respectively. Deviations between the desired position oo yx ,

and the incisal position itit yx ,  are weighted by coefficients

BsAs, , and are input into the PID control system. The output

of the PID control system is assumed to be the muscle

activation level at . This activation exerts muscle force t
of .

  
B. Experimental Methods

  

First, the mandible was assumed to be static for 0.5s in a

closing position. Subsequently, the open-close movement was

carried out continuously for 10 repetitions. iK , pK and

sK  were assumed to be 0.008, 50.0, and 0.2, respectively.

Figure 2. Position feedback control system
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Table 1 lists the values of the weighted coefficients BsAs,
and the initial muscle activation levels at . During the open-
close movement simulation performed in this experiment, the
activation level of the masseter including the internal
pterygoid, which principally functions during biting, was
always assumed to be at =0.0.
  
C. Results and Discussion
  
The x- and y- coordinates of both the desired and the incisal
trajectories are plotted against time in Fig. 3. Although the
trajectory of the y-coordinate of the incisal point slightly
vibrated, the incisal trajectories almost corresponded with the
desired ones. Ten trajectories of the incisal point and the
kinematic axis point are superimposed respectively and
displayed in Fig. 4. The trajectories of the incisal point
almost coincided except at the first open-close phase, and the
trajectories of the kinematic axis point were on the third-
order polynomial curve. From Fig. 3 and 4, it can be
observed that our jaw model is capable of realizing an open-
close movement with high reproducibility.

The muscle activation levels and muscle forces during the
open-close movement are presented in Fig. 5 and Fig. 6. As
shown in Fig. 5(a) and (b), the change patterns of activation
levels between the first quarter and the last quarter differed.
This probably means that the activation level changes assume
a pattern suitable for the open-close movement by repeating
the open-close movement continuously. The same tendency
appeared in the change patterns of muscle forces.

As shown in Fig. 5(b), the activation level of the digastric
muscle during the open phase showed a gradual rise, and
levels of the anterior and posterior temporalis during the
close phase showed gradual rises. The superior and inferior
lateral pterygoids were active during both the open and close
phases. These results agreed with the physiological data [2].

However, the muscle force of the digastric varied inversely
with its activation level during the open phase. Because the
digastric is a jaw-opening muscle, it is considered to be the
exerting muscle force during the open phase. This is due to
the nonlinear property of the Hill-based muscle model. The
model is a function of muscle length, contraction velocity,
and the muscle activation level. Even if the activation level
increases, the muscle force cannot increase when the muscle
length shortens with rapid speed. In future study, the muscle
model needs to be improved [2].
  

IV. CONCLUSION
  
We developed a two-dimensional dynamic jaw model capable
of performing an unloaded open-close movement, and carried
out a position feedback control scheme by providing a
desired movement. Throughout the experiment, it was
verified that the two-dimensional dynamic jaw model was

able to perform an open-close movement. The results of
simulation also showed reasonably good agreement with
physiological data [2]. We reached the conclusion that our
jaw model could be applied to mandibular movement control
analysis.
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Table 1. The values of the weighted coefficients As, Bs and the initial muscle

activity levels

  (a) The first quarter of jaw movement
  

As Bs at

daigstric 0.9 -0.3 0.1

inferior lateral pterygoid -0.9 -0.45 0.12
masseter including
internal pterygoid 0 0 0

anterior temporalis 0 0.9 0.25

superior lateral pterygoid -0.3 -0.1 0.12

posterior temporalis 0.45 0.9 0.1
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(b) The last quarter of jaw movement
Figure 3. x- and y- coordinates of both desired and incisal trajectories

 (a) Incisal point

(b) Kinematic axis point
Figure 4. Trajectories of the incisal point and the kinematic axis point

(a) The first quarter of jaw movement

(b) The last quarter of jaw movement
Figure 5. Muscle activation levels plotted against time

(a) The first quarter of jaw movement

(b) The last quarter of jaw movement
Figure 6. Muscle forces plotted against time
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